
Enforcing Resource Sharing Agreements
among Distributed Server Clusters

(NYU-CS-Technical Report No. TR2001-818)

Tao Zhao and Vijay Karamcheti
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

{taozhao,vijayk}@cs.nyu.edu

Abstract

Future scalable, high throughput, and high performance applications are likely to execute
on platforms constructed by clustering multiple autonomous distributed servers, with resource
access governed by agreements between the owners and users of these servers. As an example,
application service providers (ASPs) can pool their resources together according to pre-specified
sharing agreements to provide better services to their customers. Such systems raise several
new resource management challenges, chief amongst which is the enforcement of agreements
to ensure that, despite the distributed nature of both requests and resources, user requests only
receive a predetermined share of the aggregate resource and that the resources of a participant
are not misused. Current solutions only enforce such agreements at a coarse granularity and in
a centralized fashion, limiting their applicability for general workloads.

This paper presents an architecture for the distributed enforcement of resource sharing agree-
ments. Our approach exploits a uniform application-independent representation of agreements,
and combines it with efficient time-window based coordinated queuing algorithms running on
multiple nodes. We have successfully implemented this general strategy in two different net-
work layers: a layer-7 HTTP redirector and a layer-4 packet redirector, which redirect connec-
tion requests from distributed clients to a cluster of distributed servers. Our measurements of
both implementations verify that our approach is general and effective: different client groups
receive service commensurate with their agreements.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2001 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Enforcing Resource Sharing Agreements among Distributed Server
Clusters

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

Although centralized parallel and clustered servers currently dominate as the platform of choice for
running high throughput and high performance applications, there is a growing trend towards ex-
ecuting such applications on platforms constructed by clustering multiple, autonomous distributed
servers. Early evidence of this trend can be found in grid systems such as Globus [22] and Le-
gion [24], service provider “computing utilities” [1], and internet-scale networks for content distri-
bution [2], peer-to-peer computing [3, 4], and large-scale clustering [5, 6]. Such distributed server
clusters offer scalable resources at a low cost and provide better locality support for distributed
clients. However, these advantages are accompanied by new resource management challenges.

A key challenge arises from the fact that such systems may span multiple organizational do-
mains, with access governed byresource sharing agreements(also called Service Level Agree-
ments, SLAs) between owners and users of these servers. Even when resources belong to the same
domain, agreements may permit more flexible control over resource usage, considering factors such
as locality, pricing etc. To consider an example, many organizations use computing and networking
resources supplied by service providers (ISPs or ASPs) to reduce maintenance and ownership costs.
In this context, SLAs specify, usually in measurable terms, the type and level of services to be pro-
vided to a customer’s clients. Note that service providers can also have agreements amongst each
other to form a bigger resource pool.

This paper focuses on the problem of enforcing such agreements, ensuring that, despite the dis-
tributed nature of both requests and resources, user requests only receive a predetermined share of
the aggregate resource and that participant resources are not used beyond specified thresholds. Al-
though other researchers have proposed techniques for SLA enforcement in centralized servers [1,
13], such end-point solutions assume either that all client requests are being aggregated into a cen-
tralized decision-making location or that extensive feedback about server loads is available. Conse-
quently, these solutions do not scale when both clients and resources are widely distributed.

To understand the problems involved in distributed enforcement, consider the example in Fig-
ure 1, where an application service providerSwith distributed resourcesS1 andS2, each capable of
servicing 50 requests per second, negotiates SLAs with two organizationsA andB for 20% and 80%
of its resources respectively. Requests from clients ofA andB are forwarded to the servers using
two redirectorsR1 andR2. For locality reasons, these redirectors bias their distribution of requests
sent to each server:R1 forwards 75% of its requests toS1 and 25% toS2, while R2 does the reverse.

Now consider what happens in a situation when the load (in requests/sec) at the two redirectors
is (A: 20,B: 20) and(A: 20,B: 60) respectively. Because of the locality bias in the redirectors, each
server sees the following load:(A: 20,B: 30) for S1 and(A: 20,B: 50) for S2. SinceS1 andS2 are
assumed to enforce the SLAs independently,S1 services(A: 20,B: 30) requests per second, andS2
services(A : 10,B : 40) resulting in an aggregate processing rate of(A : 30,B : 70). Note that this
violates the SLA guaranteeing 80% ofS’s resources toB.

The above example shows that agreement enforcement applied only at end-points, independent
from activities elsewhere in the system, cannot handle agreements involving distributed requests and
resources. To solve this problem, this paper describes an architecture for coordinated enforcement of
resource sharing agreements at multiple admission points. Our approach, which borrows ideas from
lottery scheduling[30] and was introduced in its preliminary form in [35], employs an application-
independent way of representing agreements using “tickets” (representing transfer of rights) issued
by “currencies”; the latter denominate tickets and have dynamically fluctuating value determined by
physical system resources. In their general form, agreements consist of a lower bound (guaranteed

2

R1 R2

S1(50) S2(50)

(A 20, B 20) (A 20, B 60)

(A 15, B 15)

(A 5, B 15)

(A 5, B 5)

(A 15, B 45)

Allocation: A 20, B 30 A 10, B 40

S A
20%

S B
80%

Figure 1: End-point agreement enforcement cannot handle distributed incoming requests.

level of service) and an upper bound (best-effort level of service). Taking advantage of this uniform
expression, we shift the responsibility of enforcing agreements from applications at the server side
to the network fabric, where we realize a distributed queuing strategy that enforces these agreements
and optimizes a global metric (such as system-wide average response time) despite client requests
from multiple network entry points. Our scheme additionally accounts for hierarchical and transitive
agreement structures using a linear-programming formulation.

We have successfully implemented this strategy in two different network layers: an application
layer HTTP redirector (L7 switch) and a transport layer packet redirector (L4 switch), which forward
client requests to network-attached servers. Based upon knowledge of the aggregate sharing agree-
ments and incoming request load conditions, each redirector performs appropriate queuing of client
requests (coordinated with other redirectors) so as to enforce these agreements. The application
layer redirectors send back HTTP redirection headers to route a client’s request to desired servers,
while the transport layer redirectors use network address translation (NAT) to forward packets to
cluster servers. Measurements using a synthetic web request generator program, WebBench [7],
demonstrate that both implementations can enforce resource sharing agreements effectively, while
gracefully adapting to dynamically changing request loads.

The rest of the paper is organized as follows. In Section 2 we discuss different models of resource
sharing agreements and their uniform expression using the ticket/currency-based scheme. Section 3
describes the distributed agreement enforcement strategy and Section 4 presents its two prototype
implementations. Section 5 evaluates the performance of these prototypes. Related work is covered
in Section 6 and Section 7 summarizes the paper.

2 Expressing Resource Sharing Agreements

We are interested in resource sharing agreements in two contexts: acommunitycontext and aser-
vice providercontext. In a community, sharing agreements are between cooperative participants
who contribute resources for controlled use by other members (e.g., a peer-to-peer file sharing ap-
plication). In the service provider context, agreements are between a provider that owns resources
and customers whose clients access these resources (e.g., an ASP that hosts web-based applications
for its clients). Agreement enforcement must typically optimize different criteria in the two cases:

3

a community-wide metric (e.g., average response time) for the former, and service provider revenue
for the latter.

2.1 Different Models of Agreements

customer

customer

customercustomer

customer

ASP

sub-ASP

ASP

ASP Peer-to-peer

ASP-customer

Hierarchical

Figure 2: Different models of resource sharing agreements.

Figure 2 shows different models of resource sharing agreements in both community and service
provider contexts. Three application service providers (ASPs) in the center form a resource sharing
community. Among them there arepeer-to-peersharing agreements so that they can access larger
resource pools to provider better performance to their customers’ clients while amortizing their
costs. Each ASP hasASP-customeragreements (SLAs) with multiple customers to specify the level
of services to be provided to customers’ clients. When a sub-ASP resells ASP services to its own
customers,hierarchicalagreement structures emerge. In this paper we mainly focus on the former
two agreement models, although our techniques can be naturally extended to the latter.

2.2 Agreement Structure

Agreements are contracts between principals owning resources and those wishing to use them. In
this paper, we focus onrate resourcessuch as CPU share, network bandwidth, and server transaction
rate. Agreements refer to the access a principalj has on principali’s resources over a time window
and are modeled as a tuple:[lbij ,ubij] representing the lower bound (guaranteed reservation during
overload) and an upper bound. The lower bound is different from other reservation systems in
which the reserved resources are put aside waiting for requests. In our model, resources reserved
for principal j can be used by others ifj does not use it. This ensures better resource utilization.
In addition, agreements are interpreted dynamically: changes in a principal’s resource levels affect
the amount available to others via agreements. Extending ownership to include resources that a
principal obtains via its own agreements enables transitive flow of resources.

2.3 Agreement Representation using Tickets and Currencies

Enforcement of agreements is complicated in the presence of different resource types and transitive
agreement chains. To permit simpler enforcement, we express agreements in a uniform and abstract

4

fashion using the notions oftickets(representing transfer of rights) backed bycurrencies(whose
values are determined by physical resources).1

An agreement between two principalsA andB is represented by a flow of tickets fromA to B,
denominated byA’s currency. These tickets contribute value toB’s currency, and “fund” requests
made byB’s clients; the latter are only permitted if there are funds. Informally, agreements that
permit a principal to use others’ resources have the effect of increasing its currency value, while
agreements that let others use this principal’s resources have the opposite effect. The reason for
choosing this expression model is (1) to decouple agreement structures from the physical resources
available at any time to a principal; and (2) to permit uniform treatment of both direct and indirect
agreements. Indirect agreements do not need to be explicitly represented; instead, their effect is
naturally factored in because of the flow of resource values (tickets) through multiple currencies.

To represent the general[lb,ub] form of agreements, there are two types of tickets:mandatory
andoptional, and two corresponding values for each currency. A mandatory ticket corresponds to
the lower bound (lbij) of an agreement, and an optional ticket represents the difference between the
upper and lower bound (ubij − lbij).

M-Ticket1
40

Currency B
100

1000 u/s 1500 u/s

Currency C
100

User A User B User C

O-Ticket2
20

M-Ticket3
60

O-Ticket4
40

Currency A
100

A B
[0.4, 0.6]

B C
[0.6, 1.0]

Figure 3: Use of tickets and currencies to express sharing agreements.

Figure 3 shows an example system with three principals to clarify this model:A andB own
resources with capacities of 1000 and 1500 units/second respectively, which they share with each
other and withC. The physical resources fund currenciesA andB. A’s agreement [0.4, 0.6] withB,
allowing the latter to access between 40% and 60% of its resources is captured by a mandatory (M-
Ticket1) and an optional ticket (O-Ticket2), carrying face values 40 and 20 respectively (these values
are normalized with respect to the face value ofA’s currency, 100).B’s agreement [0.6, 1.0] with
C is represented similarly. A ticket’s real value is computed in terms of the real value of its issuing
currency. For example, M-Ticket3’s real value is 60% of the real value ofB’s currency, which in
turn is 1500+1000×(40/100) = 1900, i.e., 1140. O-Ticket4’s real value is 1900×40/100+200×
((60+ 40)/100) = 960, with contributions both from the mandatory value ofB’s currency (as per
its face value: 40%) as well as the latter’s optional value (as per the upper bound: 60%+40%).

A currency’s final remaining value, accounting for resources transferred out, represents the
mandatory and (additional) optional amounts of resource available to the associated principal. In
this example, these final values are (600,400) forA, (760,1340) forB, and (1140,960) forC. To
explainB’s values: 760= (1900− M-Ticket3’s value), and 1340= (1140+200), where 1140 is the
value of M-Ticket3 and 200 is the optional part passed fromA via O-Ticket2. Section 3.1.1 provides

1Note that although we use terminology similar to some economics-based resource allocation schemes [29, 31, 16,
15], unlike them, our approach does not involve any competitive negotiation models.

5

general expressions for computing real values of currencies, accounting for possible cycles in the
agreement graph.

In the above example, all currencies have a face value of 100, so that all face values of issued
tickets are just the percentage number of represented agreements. In fact the face value of a currency
can be an arbitrary number, which gives flexibility to change agreements by inflating or deflating the
value of a currency.

3 Request Scheduling for Agreement Enforcement

Most existing resource management infrastructures [22, 24] provide only limited support for enforc-
ing agreements, typically restricted to the end points. As our example in Section 1 demonstrates,
such support is inadequate for enforcing sharing agreements involving distributed requestors and
resources. An additional consideration is that the resource scheduler must keep track of resource
availability via both direct and transitive agreements; simulation studies in our previous work [35]
show that the latter can lead to significantly increased resource availability.

Figure 4(left) shows our agreement enforcement architecture, which coordinates multiple redi-
rector nodes to schedule requests from distributed clients to servers. The ticket/currency-based
scheme enables redirector functionality to be oblivious to the specific resource type being accessed.
Each redirector node logically maintains a set of queues (see Figure 4(right)), one for each principal,
and forwards a subset of these requests to servers every time window to satisfy the mandatory (MCi)
and optional (OCi) request processing rates the principal is entitled to, computed as described below.

R

R

R

R

R

S S1 2

3

Request
Queues

 MCi

 OCi

From Clients

To Servers

 ni

Figure 4: Agreements are enforced by coordinating multiple redirector nodes (R), which queue and
forward requests from distributed clients to servers (S) so as to satisfy aggregate resource sharing
agreements.

Stated differently, the redirector nodes perform admission control at the system edges to shape
incoming request traffic to server clusters so that desired service levels are obtained. We currently
assume that requests are short-lived (as compared to the time window) and resource consumption
of each request is known a priori, either by specification or by profiling. An implication of this
assumption is that the architecture does not need to track request completion. Requests for many
types of services fit this model, with examples including web requests, small file transfers, etc.
Extending our architecture to support longer lived requests such as continuous media streams would

6

require additional (but orthogonal) support on the server side; such support would provide a sandbox
or a resource container environment [18, 13] to ensure that the request complies with its allocated
server share.

We first describe the queuing algorithms assuming a single redirector, and then extend these to
multiple redirectors distributed across a wide-area network.

3.1 Scheduling using a Single Redirector

Given an agreement graph as input, the scheduler must (1) determine per-principal mandatory and
optional request processing rates implied by both direct and indirect agreements; and (2) based upon
request patterns observed at runtime, decide how to schedule each principal’s requests to optimize a
global system-wide criterion.

3.1.1 Per-Principal Mandatory and Optional Access Levels

For quasi-static agreement structures, mandatory and optional request processing rates can be pre-
computed based on the agreement graph. For simplicity, our description assumes a single resource
type: the agreement matrix consists of elements[lbij ,ubij] representing direct agreements. Principal
i’s physical resources are represented by their aggregate capacityVi , scaled in terms of the average
requirements of a request.

To compute the mandatory (MCi) and optional (OCi) processing rates for requests of a particular
principal i, we first calculate theflow of mandatory and optional resources from each principalj to
i (see Figure 5(left)). The flow of resources can themselves be expressed in terms of a recurrence
relation involving the number of direct agreements along the path. Formulae 1 and 2 in Figure 5 give
the expressions for these flows,MI (m)

ji
andOI(m)

ji
, for paths involving at mostm tickets. Formula 1

says that mandatory resources flow along mandatory tickets (lower bound) from one currency to
another: the(1−∑k lbik) factor excludes the mandatory valuei passes along to others (i.e. which
leaks out ofi) as shown in the figure. Formula 2 is more complex, capturing the fact that mandatory
currency values contribute to mandatory resources (via mandatory tickets) up to a particular point
in the path, and thereafter to optional resources (via an optional ticket at the specific point, and via
agreement upper bounds beyond that point). The summation constraints ensure that there is no cycle
along the transitive agreement path.

Although these formulae are complicated, note that they can be rewritten as:

MI (m)
ji

= Vj ×MT(m)
ji

and OI(m)
ji

= Vj ×OT(m)
ji

whereMT(m)
ji

andOT(m)
ji

can be pre-computed from the agreement matrix.
Once the flows between each pair of principals has been computed, principali’s mandatory and

optional access levels,MCi and OCi , are simply defined in terms of the transitive closure,MI ji
andOI ji of the above expressions (see Formulae 3 and 4 in Figure 5). In essence, the computations
described here allow us to reduce any arbitrary agreement graph to a series of simple expressions that
relate the real currency values for each principal to the physical resources available in the system.

3.1.2 Queuing Algorithms

Knowing MCi and OCi for each principali, the queuing algorithm must determine in each time
window, what subset of theni requests ini’s queue (see Figure 4(right)) must be forwarded to

7

MIki

OIki

Vi

MIik

∑
∑
−

×

k
ik

k
ik

k i lb

lb
MI

1
Currency i

∑
∑∑∑∑

∑∑

∑ ∑

∑ ∑

−
×++=

−+=

−×+=

−×+=

≠≠≠

≠≠

≠∀≠
≤≤

−

=

−

≠∀≠
≤≤

−

−

−++++−

−

−

k ik

k ik

ik
ki

ik
ik

ik
kii

ik
ik

ik
kiii

qpkjik
nkk

m

r
ikkkkkkkkkkkjkj

m
ji

m
ji

qpkjik
nkk k

ikikkkjkj
m

ji
m

ji

lb

lb
MIMIOIOC

MIMIVMC

ubublbublblblbVOIOI

lblblblbVMIMI

qp
m

mrrrrrrrr

qp
m

m

1

)(

)1(

)(,,
,,1

1

1

)1()(

)(,,
,,1

)1()(

11

121111211

11

1211

L

L

LL

L

j
i

Flow along one path with length m into i:

k1

k2
km-2

km-1

Flows along all paths with
length <= m-1: MIji

(m-1)Vj

k

lbik

leaks out of i

(1)

(2)

(3)

(4)

ikkkjkj m
lblblbV

1211 −
××× L

Figure 5: (left) Mandatory resource flow fromj to i via a transitive chain of agreements involving in-
termediate nodesk1,k2, . . . ,km−1. (right) The mandatory value of a currencyi includesVi , resources
flowing into i and excludes resource flowing out fromi. The optional value includes all optional
resource flowing intoi, plus all resource flowing out ofi.

the servers. This decision should respect sharing agreements and at the same time optimize a global
metric. The representation of agreements described in Section 2 is general enough to capture various
kinds of metrics. In this section, we discuss two of them in different contexts. The first metric
minimizes the maximum global response time seen by requests in a community context, while the
second maximizes the income of the service provider in a service provider context.

Global Response Time Participants in a community contribute server resources to the resource
pool and submit requests to the pool. The goal of our admission control is to minimize the maximum
response time of all participants. This optimization is formulated as a linear-programming problem.
Let xi j be the number of requests fromi’s queue that will be scheduled toj ’s server. Our objective
is equivalent to maximizing the minimum fraction of all queues to be processed, i.e., maximizing
θ = min1≤i≤n∑k xik/ni . Adding additional constraints to honor agreements, we come up with the
following model:

maximize θ

subject to ∑k xik ≥ θni ∀i
∑k xki ≤Vi ∀i
MIki ≤ xik ≤MIki +OIki ∀i,k
∑k xik ≤ ni ∀i

The first constraint just restates our requirements onθ . The second prevents the scheduler from
assigning requests to usei’s server that might exceed its capacityVi . The third constraint, together

8

with the access level formulae 3 and 4 computed earlier, forces compliance with the agreement
lower and upper bounds2. Solving this linear programming model, the redirector obtains the queuing
schedule that maximizesθ . Although each redirector node supports a large population of clients,
the complexity of this strategy only depends on the number of principals involved in the agreements;
this latter number is expected to be small.

Note that this model can be easily extended to take locality costs into consideration. We model
locality as limiting the number of requests (ci) that can be pushed to principali’s servers from the
redirector in a time window, resulting in the following additional constraint:

∑
k

xki ≤ ci ∀i

Total Income of Provider In a service provider context, we consider a simple price model, where
a single service providers negotiates, as part of the SLA, a pricepi with each customeri for each
additional request processed bys beyond the mandatory service level. The goal of our admission
control now becomes maximizing the provider’s income while respecting agreements with all of its
customers. This optimization can also be modeled as a simple linear programming model3, involving
xi , the number of requests that should be processed for customeri in a given time window.

maximize ∑i pi(xi −MCi)
subject to ∑i xi ≤Vs

MCi ≤ xi ≤MCi +OCi ∀i
xi ≤ ni ∀i

Note that although we have chosen to represent the underlying optimization problems as lin-
ear programming formulations, the architecture itself is general and flexible enough to host other
optimization criteria and solving methods.

3.2 Coordinated Scheduling Across Multiple Redirectors

The queuing strategy as discussed above is not very scalable, because it assumes a single redirector
that sees all requests. Our general solution extends the queuing algorithm to a distributed setting
by observing that the single-node solutions can work on local redirector queues just the same as

before as long as decisions about the fraction of the local queue to transmit to servers,
xlocalij
nlocali

, are

based upon global values of the total queue lengths for each principal, i.e.,
xlocalij
nlocali

=
xi j
ni

. Note that
the queue length is an aggregate quantity of the system and can be computed much more efficiently
than a neighbor-wise exchange of queue statistics.

In particular, we organize the multiple redirector nodes into adynamic combining treenetwork
(see Figure 4). Several algorithms exist for dynamically overlaying trees on a set of nodes in a wide
area network, so we will not discuss this further. Redirectors at the leaves of this tree periodically
send up queue length information to their parents. An intermediate node in the tree waits for infor-
mation from its children, adds its local queue information to this, and passes on the information to
its parent. When the queue length information reaches the root, this node sends the final aggregate
information down the tree, effectively using the combining tree as a broadcast tree.

2The lower bound of this constraint needs to be dropped if the queue is not large enough, i.e.ni < MCi .
3As before, this model needs slight modifications if the queue is not large enough.

9

This scheme is scalable, requiring a total of 2(n−1) message transmissions (as opposed toO(n2)
messages required for pair-wise exchange), however, it has the potential drawback that the computed
queue length information is only an estimate that can lag actual conditions. We do not expect the
latter to pose a practical problem as long as client request patterns do not vary dramatically over
small time scales.

In addition to total queue length, other aggregate queue metrics such as the maximum, minimum,
average queue length, and variation in queue lengths, can also be collected in the same fashion if
schedulers need such information for other optimization metrics.

4 Prototype Implementations

We have implemented our redirection architecture in two different network layers: an application
layer HTTP redirector (L7 switch) and a transport layer packet redirector (L4 switch), both sitting
between clients and a clustered server system accessed using HTTP. The request URL signifies the
service being requested. Both prototypes follow the structure shown in Figure 4: HTTP requests
sent out by clients are routed to a redirector, which maintains a per-organization queue and makes
scheduling decisions as discussed in Section 3. Large requests are treated as multiple small ones for
the purpose of scheduling.

4.1 Layer-7 Redirection

For requests that can be dequeued and sent to an assigned server according to the scheduling de-
cision described earlier, our application level redirector sends an HTTP redirection message (with
server information in its “Location” header) to the client, causing it to direct the request to the as-
signed server. If the request cannot be currently processed according to the service level limitation
implied by the agreements, the redirector will send back a redirection header with its own address,
which causes the client to resend the request. The redirector calculates scheduling decisions at the
beginning of each time window by solving the linear programming models and multiple redirectors
are connected to form a dynamic combining tree to periodically propagate queue length information,
both as described in the previous section.

4.1.1 Implementation 1: Explicit Queuing

Our first application redirector implementation used explicit per-principal queuing: incoming re-
quests were enqueued and scheduled at the start of the next time window. However, we found
during our measurements by using a synthetic web server workload generator, WebBench [7], that
server processing rates were not linearly increasing with increased client activity as we would have
expected. With a single client, the server saw 115 requests/second, but this number only increased
to 190 with two clients, and 230 with three.4 This behavior could not be simply explained because
neither the server nor the redirector became bottlenecks (CPU utilization stayed below 70%), and
the network was underutilized (peak bandwidth into the server was 1.4MBps).

To investigate this problem, we measured request/reply activity at the redirector by breaking
down each time window into 10 slots. Figure 6 shows these results, which explain our observed

4Because the WebBench 4.01 client cannot handle a redirection reply on its own, we added a modified Apache proxy
on each client, which affects the base request rate more than any overhead in the redirector itself.

10

Request Arrival Distribution

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10
Slot in Time Windows

R

eq
ue

st
s

1 client machine

2 client machines

Outgoing Reply Distribution

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10
Slot in Time Windows

R

ep
ly

 fr
om

 R
ed

ire
ct

or

1 client machine
2 client machines

(a) (b)

Figure 6: (a) Request distribution and (b) Reply distribution seen at the redirector in the explicit
queuing implementation.

behavior. Requests are spread over the entire time window as expected (the drop in the last slot is
because the redirector is running the linear-programming algorithm and hence unable to receive new
requests); however, almost all redirection replies are sent out in the first slot (right after the redirector
makes the allocation decision). This bursty behavior is propagated via the client-side proxies to the
server end and does end up overloading the server, degrading performance when there are multiple
clients. Note that this behavior is not visible in the time-averaged CPU utilization at the server.

Thus, explicit queuing ends up bunching together requests that would otherwise have been spread
out over time. This could be fixed by having the redirector spread its replies over the time window;
however, this would increase queue management costs. Instead, we chose to use the implementation
described below, which avoids explicit queuing altogether.

4.1.2 Implementation 2: Implicit Queuing

The main idea here is for the redirector to decide, for each time window, how many requests it
can allow for each principal. The redirector still solves the linear-programming formulation, but
with estimated queue lengths as opposed to actual ones. This allows requests that fall within a
principal’s quota to be immediately forwarded, and those that fall outside to be implicitly queued
by simply sending a self-redirection message causing the client to retry. This scheme eliminates the
anomalous behavior described earlier as can be seen in Figure 7, which shows the server processing
rates for different numbers of clients. The single client number is 135, which doubles to 270 as
expected with two clients. With three clients, the server saturates at 320 requests per second.

Although our application level redirection doubles the number of network round trips, this is
more an artifact of HTTP as opposed to something fundamental. For instance, implementing the
strategy within SOAP redirectors [8] would not encounter this problem. Moreover, the scheduling
strategy itself can be deployed with other more efficient approaches such as those described in [17].
Below, we present one such implementation that operates as a transport layer (layer-4) switch.

11

Server capacity

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140
time (sec)

#r
eq

/s
ec

1 client
2 clients
3 clients

Figure 7: Three client machines saturate the web server with 320 requests per second.

4.2 Layer-4 Redirection

Our layer-4 redirector implementation is on top of Linux Virtual Server [33, 9], a basic framework
to build highly scalable and available network services using a cluster of servers. Our redirector
has two components: a Linux kernel module plugged into this framework and a user space daemon
which communicates with the module.

The Linux Virtual Server framework provides three IP switch techniques: network address trans-
lation (NAT), IP tunneling (TUN) and direct routing (DR). While NAT and DR work best for a LAN
environment, TUN can be used in wide area network situations where multiple redirectors are geo-
graphically distributed. Our implementation can use all three mechanisms without any modification,
but we describe only NAT in this paper for simplicity.

Upon seeing a TCP connection establishment (SYN) packet from a client, the redirector chooses
a server according to the scheduling decision passed from the user space daemon (see below),
rewrites the destination address and the port of the packet to those of the selected server, forwards
the packet to the assigned server, and records current connection information so that subsequent
packets from the client are sent to the same server. All the work is performed inside the kernel,
so that the overhead is low. When the response packets come back from the server, the redirector
rewrites the source address and the port back to those of the redirector and forwards it to the client.
If the module cannot admit the request according to scheduling decisions, it will put the packet into
a kernel-level queue associated with the principal owning the target URL. Another kernel thread in
the module periodically checks these queues, reinjecting packets back into the system in subsequent
time windows as allowed by the agreements. Note that our implementation maintains connection
affinity between client machines and servers to the extent allowed by the sharing agreements; this
allows us to efficiently support services that rely on pairwise-negotiated security keys such as those
based on the SSL protocol.

The user space daemon periodically collects queue length information from the kernel module,
calculates scheduling decisions by solving the linear programming models discussed in Section 3,
and feeds allocation information for the next time window into the kernel module.

12

5 Experimental Results

We use a synthetic server workload generator, WebBench [7] to evaluate the performance of our two
prototype redirector implementations. All experiments use Apache web servers, 1 GHz PCs running
Windows 2000 on a 100 Mbps switched network, and a WebBench configuration that produces static
and dynamic web page requests with an average reply size of 6 KB (individual responses range from
200 bytes to 500 KB). Scheduling decisions are made over 100 ms time windows.

5.1 Application Layer Redirector

In this section, we present experimental results obtained from our layer-7 redirector prototype. We
first verify that our system enforces sharing agreements in a service provider context and achieves
minimum global response time in a community context. Then we show that our distributed coordi-
nation scheme can handle network delays gracefully.

5.1.1 Sharing Agreements in a Service Provider Context

To verify that the queuing scheme described in Section 3 does in fact respect sharing agreements,
we set up a system (see Figure 8) involving three principals: the server owner and two organizations
A andB. A’s requests are modeled by two WebBench client machines, while a third modelsB’s
requests.A’s agreement with the server is [0.2,1], whileB’s is [0.8,1]. Thus, in this system,B has
more mandatory resources thanA, but A has a higher request rate. The experiment itself runs in
three phases. In the first and third phases, bothA’s andB’s clients are active, while in the second
phase onlyA’s clients are active.

Agreements are respected

0

50

100

150

200

250

300

350

0 100 200 300 400
time (sec)

#r
eq

/s
ec

A: 2 clients
B: 1 client

phase 1 phase 2 phase 3

[0.2, 1]
[0.8, 1]

V = 320

Server

R

C1 C3C2

A B

Figure 8: Sharing agreements are respected.B’s requests, when present, amount to less than its
mandatory limit and are all responded to, whileA’s requests use up the remaining resources.

Figure 8 shows the expected behavior: in the first phase,B’s requests from a single client (130
per second) are all satisfied because this number is belowB’s mandatory limit of 80% of server
capacity.A’s requests take up the remainder, around 190 requests per second. In the second phase,
A’s requests can use up all of the server but are limited to 270 requests/second because of two client
machines. The third phase shows that the system is able to respond to changing request patterns:
B’s requests again get serviced at the desired rate.

13

5.1.2 Optimization of a Global Metric

In a community context, to minimize the maximum response time for requests across all organi-
zations, the redirector should assign more resources to busier sites (after satisfying the mandatory
limits). To verify that the optional tickets are indeed allocated according to incoming request rates,
we focused on the first phase of the previous experiment, modifying it so that bothA andB had
agreements of [0.2,1] with the server owner. Server capacity was restricted to 250 requests per sec-
ond to ensure that the results are not affected by a single client’s ability to only generate 135 requests
per second. Figure 9 shows the expected result:A’s requests are processed at twice the rate ofB’s
requests, optimizing community-wide average response time.

Minimize global response time

0

50

100

150

200

250

300

0 50 100 150
time (sec)

#r
eq

/s
ec

A: 2 clients

B: 1 client
[0.2, 1]

[0.2, 1]

V = 250

Server

R

C1 C3C2

A B

Figure 9: The scheduler optimizes a global response time metric by assigning more resources to
community organizations with higher request rates.

5.1.3 Evaluation of Multiple Redirector Scheduling

The coordinated scheduling scheme follows the structure described in Section 3. The system con-
figuration was changed so that it had two redirector nodes instead of our original one. Each client
machine sent its requests to a different redirector. As described earlier, each of the redirectors make
their own scheduling decisions based only upon aggregate load information obtained via the com-
bining tree. Figure 10 and 11 shows the request processing rate obtained with multiple redirectors
for the two experiments described earlier. As can be seen, the coordinated scheme obtains very
similar results.

5.1.4 Impact of Network Delay

Since our experiments have been conducted in a LAN setting, it is possible that our results may
not extend to WAN settings where communication delays are likely to be longer. To model the
latter, we deliberately add delays in the combining tree, so that each redirector receives queue length
information that has a lag of 10 seconds from actual values. This relatively large delay also accounts
for the larger redirector trees one is likely to use in practice.

As before, two of the three client machines send requests forA and the other one forB. A has an
agreement [0.8, 1] with the server andB [0.2, 1]. The system has two redirectors, one that handles

14

Agreements are respected in distributed scheme

0

50

100

150

200

250

300

350

0 100 200 300 400

time (sec)

#r
eq

/s
ec

A: 2 clients
B: 1 client

phase 1 phase 2 phase 3

[0.2, 1]
[0.8, 1]

V = 320

Server

R1

C1 C3C2

A B

R2

Figure 10: Scheduling with multiple redirectors showing sharing agreements are respected.

Minimize global response time
in distributed scheme

0

50

100

150

200

250

300

0 50 100 150
time (sec)

#r
eq

/s
ec

A: 2 clients

B: 1 client

[0.2, 1]
[0.2, 1]

V = 250

Server

R1

C1 C3C2

A B

R2

Figure 11: Scheduling with multiple redirectors showing global metrics are optimized.

A’s requests and the otherB’s (see Figure 12). The experiment proceeds in three phases: in the first
and third phases, onlyB has requests, while in the second phase bothA andB have requests.

Figure 12 shows how network delay affects system behavior. At the start (phase 1),B’s redirector
does not know the status of the rest of the system: it therefore conservatively uses only of its manda-
tory tickets (i.e., half of 20% of 320) achieving a request processing rate of 30 requests/second.
After about 10 seconds, when it receives global queue length information and learns that there are
no other requests, it can use all of the server resources but is limited by the single client rate (phase
2). WhenA’s requests start arriving, there is a period of 10 seconds whereA’s andB’s requests
compete for the server (phase 3). However, once the information becomes available, each redirector
changes its scheduling policy so that agreements are respected:B’s requests see a processing rate of
65 per second (20% of 320), whileA’s requests are limited to 255 per second (80% of 320) (phase
4). Similar behavior is observed whenA’s requests stop arriving (phases 5 and 6), verifying that
as long as request patters are stable for time scales longer than network delays, our coordination
scheme can gracefully cope with network delay.

15

Network delay

0

50

100

150

200

250

300

0 50 100 150 200 250
time (sec)

#r
eq

/s
ec

A: 2 clients

B: 1 client

phase 1 2 3 4 5 6

[0.8, 1]
[0.2, 1]

V = 320

Server

R1

C1 C3C2

A B

R2
10s

Figure 12: The multiple redirector scheme with a 10 second network propagation delay.

5.2 Layer-4 Redirector

In this section we present results of two experiments obtained using our L4 redirector prototype:
one in a community context and another in a service provider context. Needless to say, the L4
redirector outperforms the application-level redirector in terms of its impact on request latency and
bandwidth (the experiments reported below require less than 15% CPU usage on the redirector).
However, a Layer-7 redirector might still be an appropriate implementation in situations requiring
application-specific processing of requests at the redirectors (in addition to enforcement of resource
sharing agreements).

5.2.1 Sharing Agreements in a Community Context

In this experiment, we setup a system with 2 principalsA andB in a community. Both of them own
a server with capacity 320.B shares its server withA according to the agreement [0.5, 0.5] (see
Figure 13). The experiment runs in four phases. In the first phase, two WebBench client machines
send requests forA and one forB. SinceA can useB’s server to process 160 requests per second,
A’s requests are processed at the rate of 480 per second, whileB’s requests only receive service at
160 per second. In the second phase, both ofA’s clients stop sending requests, thereforeB’s requests
are processed at the rate of 320 using the full capacity ofB’s server. In the third phase, one ofA’s
client machines starts sending requests again, so processing rate forA’s requests can go back to 480
but is actually limited to about 400 because of the limitation of one client machine. At the same
timeB’s requests can be processed at the rate of 240 per second (B’s server needs to only process 80
A’s requests per second). Note that achieving this behavior is only possible because client requests
are scheduled against the aggregate community resource. In the last phase,A’s client stops sending
requests and the behavior of the system is the same as in the second phase.

5.2.2 Maximization of Service Provider Income

In this experiment, a service provider has two servers (each with capacity 320) and two customers
A andB, with agreements [0.8, 1] and [0.2, 1], respectively. In addition,A pays more thanB for
each additional request processed beyond the mandatory processing rate. The provider will try to

16

C3

V = 320

Server
B

C1

C2

V = 320

ServerA

Agreements are respected

0

100

200

300

400

500

600

0 100 200 300 400 500
time (sec)

#r
eq

/s
ec

A: 2 ,1, 0 clients
B: 1 client

phase 1 2 3 4

[0.5, 0.5]

R

Figure 13: Resource agreements are respected when bothA andB own their own server, andB shares
50% of its resources withA.

maximize its income while respecting agreements. Figure 14 shows the results. As in the previous
example, in phase 1, two client machines send requests forA and one forB. We can see thatB’s
requests are only processed at the rate of 128 per second (20% of total server capacity,B’s mandatory
rate), while all remaining server capacity is taken up byA’s requests, which generate more income
to the provider. In the second phase, there are no requests fromA’s clients, so all ofB’s requests
are processed, limited to 400 because of the number of requests that can be generated by a single
client machine. In the third phase, one ofA’s client machines again starts generating requests, which
are given first preference to the server resource, whileB’s requests take up the remaining capacity.
Finally, the fourth phase, whenA’s clients again become inactive repeats the behavior of the second
phase. In all cases, the provider’s revenue is maximized.

Maximize income

0

100

200

300

400

500

600

0 100 200 300 400 500
time (sec)

#r
eq

/s
ec

A: 2, 1, 0 clients
B: 1 client

phase 1 2 3 4pA > pB

[0.8, 1]

[0.2, 1]

V1 = 320

S1

R

C1 C3C2

A B

S2

V2 = 320

Figure 14: The redirector maximizes the income of the service provider by admitting as many
requests for the highest paying customer as possible.

17

6 Related Work

Our work is closely related to five groups of previous work: large-scale resource management in-
frastructures [22, 24, 26], SLA enforcement in server farms [1, 13], request schedulers for cluster-
based network services [10, 11, 12, 14, 20, 33, 28, 34], economy-based models for resource alloca-
tion [29, 31, 16, 15], and queue-based network QoS algorithms [19, 32, 27, 21].

Grid infrastructures such as Globus [22, 23], Legion [24, 25], and Condor [26] need to respect
sharing agreements when pooling together resources belonging to multiple domains. However, ex-
isting solutions in these infrastructures have either left agreement enforcement to the end-points [26],
or have limited themselves to providing an extensible architecture where resource management algo-
rithms can be plugged in [22, 24] without explicitly providing a solution to the problem we describe.

Current-day techniques for SLA enforcement are perhaps best exemplified in the Océano [1] sys-
tem, a “computing utility” infrastructure for multi-customer hosting on a server farm. It smoothes
out peaks in customer requests by sharing the same resources (sequentially in time) among mul-
tiple customers. However, in large part due to non-uniform, application-specific SLA structures,
Océano’s resource allocation scheme operates at a relatively coarse granularity, requiring several
minutes to carry out a new allocation decision. An advantage of our scheme is its finer-grained
enforcement, which has the potential for impacting the granularity at which SLAs in Océano-like
systems are specified.

Cluster-based network servers are now widely used. Commercial products [10, 11] are avail-
able to be used as front-ends for cluster servers. Most request distribution strategies fall into two
categories: weighted round-robin and its variations for load balancing [12, 14, 20, 33], and content-
aware load distribution for locality [28, 34]. Our work focuses on an orthogonal problem, of ensuring
that requests from different customers receive service commensurate with pre-specified agreements.
More related to our work is the Cluster Reserves technique [13], a mechanism to maintain desired
cluster-wide resource allocations for different “service classes”. The technique focuses on server
resource partitioning (using operating system support for “resource containers”) by relying upon
availability of server load information at a centralized resource manager. Our technique is in some
sense complementary, focusing on distributed admission control on the edges to ensure the right mix
of requests arrive at the servers. As we note earlier, extending our technique to support longer-lived
requests would require support similar to Cluster Reserves.

Our use of tickets and currencies overlaps in its terminology with economic models for sharing
distributed resources; however, our approach is more traditional in its cooperative algorithmic focus.
Although economic systems such as Spawn [29], MarketNet [31], Nimrod/G [16], and GRACE [15],
can work well in slow-changing systems, they may fail to achieve competitive equilibrium because
of dynamic perturbations of supply and demand in environments where resource availability and
request patterns can change frequently. It is these latter environments that our techniques focus on.

Finally, our queuing strategy builds upon the samevirtual timenotion for proportional resource
sharing that has been used in the context of network queuing algorithms [19, 32] and real-time mul-
timedia CPU scheduling [27, 21]. However, unlike the explicit queue structures in these systems, we
have found an alternative credit-based implementation more suitable to our distributed context. An-
other important difference is the fact that our decisions involve a more complex agreement structure
and need to be coordinated across multiple nodes.

18

7 Summary

We have described an architecture for distributed, coordinated enforcement of resource sharing
agreements based on an application-independent way to represent resources and agreements. We
have successfully implemented this general strategy in two different network layers: a layer-7 HTTP
redirector and a layer-4 packet redirector. Evaluation of both prototype implementations in the con-
text of HTTP-based clustered servers shows that our approach can enforce predetermined resource
sharing agreements with low overhead and dynamically adapt to load changes in a responsive fash-
ion.

Acknowledgments

This research was sponsored by DARPA agreements F30602-99-1-0157, N66001-00-1-8920, and
N66001-01-1-8929; by NSF grants CAREER:CCR-9876128 and CCR-9988176; and Microsoft.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright annotation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as representing the official policies or en-
dorsements, either expressed or implied, of DARPA, Rome Labs, SPAWAR SYSCEN, or the U.S.
Government.

References

[1] Océano Project, IBM T. J. Watson Research Center - http://www.research.ibm.com/oceanoproject/.
[2] Akamai - http://www.akamai.com/.
[3] Napster - http://www.napster.com/.
[4] Gnutella - http://gnutella.wego.com/.
[5] SETI@Home - http://setiathome.ssl.berkeley.edu/.
[6] Entropia - http://www.entropia.com/.
[7] Webbench - http://www.zdnet.com/zdbop/webbench/.
[8] Simple Object Access Protocol (SOAP) - http://www.w3.org/TR/SOAP/.
[9] Linux Virtual Server Project - http://www.linuxvirtualserver.org.

[10] Cisco LocalDirector - http://www.cisco.com.
[11] IBM interactive network dispatcher - http://www.ics.raleigh.ibm.com/ics/isslearn.htm.
[12] D. Andresen, T. Yang, V. Holmedahl, and O. Ibarra. SWEB: Towards a scalable WWW server on

multicomputers. InProceedings of the 10th IPPS, 1996.
[13] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves: A mechanism for resource management

in cluster-based network servers. InProceedings of the ACM Sigmetrics, 2000.
[14] A. Bestavros, M. Crovella, J. Liu, and D. Martin. Distributed packet rewriting and its application to

scalable server architectures. InProceedings of the 6th International Conference on Network Protocols,
1998.

[15] R. Buyya, D. Abramson, and J. Giddy. Economy driven resource management architecture for compu-
tational power grids. InInternational Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA), 2000.

[16] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An architecture for a resource management and
scheduling system in a global computational grid. InProceedings of HPC ASIA, 2000.

[17] V. Cardellini, M. Colajanni, and P. S. Yu. Dynamic load balancing on web systems. InIEEE Internet
Computing, June 1999.

19

[18] F. Chang, A. Itzkovitz, and V. Karamcheti. User-level resource-constrained sandboxing. InProceedings
of 4th USENIX Windows Systems Symposium, 2000.

[19] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm. In
Proceedings of ACM SigComm, 1989.

[20] D. M. Dias, W. Kish, R. Mukherjee, and R. Tewari. A scalable highly available web server. InProceed-
ings of the IEEE International Computer Conference, 1996.

[21] K. Duda and D. Cheriton. Borrowed-virtual-time (BVT) scheduling: supporting latency-sensitive
threads in a general-purpose scheduler. InProceedings of 17th ACM Symposium on Operating Sys-
tems Principles, 1999.

[22] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.The International Journal
of Supercomputer Applications and High Performance Computing, 11(2):115–128, Summer 1997.

[23] I. Foster and C. Kesselman. The Globus project: A status report. InProceedings of the Heterogeneous
Computing Workshop, pages 4–18. IEEE Computer Society Press, 1998.

[24] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F. Reynolds, Jr. Legion: The next
logical step toward a nationwide virtual computer. Technical Report CS-94-21, Department of Computer
Science, University of Virginia, June 08 1994.

[25] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F. Reynolds, Jr. A synopsis of the
Legion project. Technical Report CS-94-20, Department of Computer Science, University of Virginia,
June 08 1994.

[26] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor : A hunter of idle workstations. In8th International
Conference on Distributed Computing Systems, pages 104–111, Washington, D.C., June 1988. IEEE
Computer Society Press.

[27] J. Nieh and M. Lam. The design, implementation, and evaluation of SMART: A scheduler for multime-
dia applications. InProceedings of 16th ACM Symposium on Operating System Principles, 1997.

[28] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, and E. Nahum. Locality-
aware request distribution in cluster-based network servers. InProceedings of the 8th conference on
architectural support for programming languages and operating systems, 1998.

[29] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S. Stornetta. Spawn: A distributed
computational economy. InIEEE Transactions on Software Engineering, 1992.

[30] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: flexible proportional-share resource man-
agement. InProceedings of the First Symposium on Operating System Design and Implementation,
1994.

[31] Y. Yemini, A. Dailianas, and D. Florissi. Marketnet: A market-based architecture for survivable large-
scale information systems. InProceedings of Fourth ISSAT International Conference on Reliability and
Quality in Design, 1998.

[32] L. Zhang. VirtualClock: A new traffic control algorithm for packet-switched networks.ACM Transac-
tions on Computer Systems, 9(2):101–124, 1991.

[33] W. Zhang. Linux virtual server for scalable network services. InOttawa Linux Symposium, 2000.
[34] X. Zhang, M. Barrientos, J. B. Chen, and M. Seltzer. HACC: An architecture for cluster-based web

servers. InProceedings of the 3rd USENIX windows NT symposium, 1999.
[35] T. Zhao and V. Karamcheti. Expressing and enforcing distributed resource sharing agreements. In

Proceedings of Supercomputing, Nov. 2000.

20

